SpectraSensors TDLAS Analyzers for Natural Gas Processing
Accurate and reliable measurement of H₂O, H₂S and CO₂
SpectraSensors’ mission SpectraSensors specializes in the design and manufacture of tunable diode laser absorption spectroscopy (TDLAS) analyzers for on-line, real-time measurement of contaminants in process gas streams. Bringing together individuals from diverse scientific and engineering disciplines has enabled us to solve real-world problems and become the recognized leader in TDLAS technology with an unmatched portfolio of patents. Our commitment to providing accurate and reliable solutions for measuring contaminants in process gas streams is evidenced by an installed base of 7,500+ TDLAS analyzers around the world.

Industries served SpectraSensors’ TDLAS analyzers are used in the natural gas, gas processing, liquefied natural gas (LNG), petrochemical, refining, and atmospheric testing industries.

SpectraSensors’ organization SpectraSensors, Inc. was formed in 1999 as a technology spin-off of the NASA / Caltech Jet Propulsion Laboratory (JPL) in Pasadena, California. Technology development and analyzer manufacturing are based in Rancho Cucamonga, California, and the company headquarters is in Houston, Texas. A regional Center-of-Competence (CoC) is located in Compiègne, France to provide technical support to European customers.

SpectraSensors was acquired by Endress+Hauser in 2012. Endress+Hauser is a global leader in instrumentation for process automation based in Switzerland which has built an unsurpassed reputation for producing high quality instruments for measurement and control of liquid phase processes. Acquisition of SpectraSensors extends Endress+Hauser’s presence into gas phase measurements and strengthens SpectraSensors’ ability to support customers globally. In late 2013, Kaiser Optical Systems, Inc, the company which developed the Raman-based Optograf spectrometer, was also acquired by Endress+Hauser, further solidifying the company’s position in gas analytics.
Natural gas processing involves separating methane (CH\textsubscript{4}) from other hydrocarbons, fluids, and contaminants entrained in raw wellhead gas to produce pipeline-quality dry natural gas.

Raw natural gas is a complex mixture of methane, hydrocarbon condensates (natural gas liquids - NGLs), water, and contaminants; hydrogen sulfide (H\textsubscript{2}S), carbon dioxide (CO\textsubscript{2}), nitrogen, mercury, and other compounds. The composition of natural gas varies widely based on the geological formation it is extracted from.

Key processing steps include amine treatment to remove H\textsubscript{2}S and CO\textsubscript{2} from sour gas, molecular sieve dehydration of the resulting sweet gas, and fractionation to separate and recover NGLs (ethane, propane, butane) from pipeline-quality natural gas.

SpectraSensors tunable diode laser absorption spectroscopy analyzers measure H\textsubscript{2}S, CO\textsubscript{2}, and H\textsubscript{2}O at critical points in the gas treatment process. These measurements help plant operators improve process control, meet stringent product specifications, mitigate corrosion damage, and reduce operating costs.
The SpectraSensors advantage Tunable diode laser absorption spectroscopy (TDLAS) analyzers from SpectraSensors perform on-line, real-time measurements of impurities in natural gas streams from sub-ppm levels to low percentage levels. The unique design of SpectraSensors’ TDLAS Analyzers provide significant advantages over other technologies for monitoring H₂O, H₂S, and CO₂ in natural gas and natural gas liquids (NGLs).

Non-contact measurement The laser and solid state detector components of TDLAS analyzers are isolated and protected from the process gas and entrained contaminants flowing through the sample cell. This design avoids the fouling, corrosion, and memory effects associated with Al₂O₃ moisture sensors and Quartz Crystal Microbalance analyzers ensuring reliable long-term operation.

Fast response and analysis time TDLAS analyzers detect changes in analyte concentration much faster than other techniques. The wet-up and dry-down times associated with Quartz Crystal Microbalances can result in a delayed response or failure to detect a sudden increase in H₂O concentration signaling breakthrough in a molecular sieve dehydration vessel.

Selective and specific analyte measurement TDLAS analyzers selectively measure the spectroscopic signature of H₂O, H₂S, and CO₂ in natural gas. Al₂O₃ sensors and Quartz Crystal Microbalances cannot distinguish between H₂O and methanol and give a false reading when methanol is present in natural gas as a hydrate inhibitor.

Low cost of ownership Unlike lead acetate tape analyzers or GCs, TDLAS analyzers have virtually no consumable components resulting in a lower cost of ownership and a lower service and maintenance burden on technicians.
Raw natural gas from different geological formations contains varying amounts of acid gases (H$_2$S and CO$_2$). Natural gas that contains H$_2$S in excess of specifications for pipeline-quality gas is generally considered sour gas. Approximately 40% of the world’s natural gas reserves are sour gas. Fields with sub-quality natural gas, containing > 2% CO$_2$, 4% N$_2$, and 4 ppmv H$_2$S are also widespread.

Gas Sweetening processes are designed to remove acid gases from sour gas to meet specifications for gas transmission pipelines. Amine Treatment Units are commonly used in gas processing plants to scrub H$_2$S and CO$_2$ from natural gas.

In operation sour gas is contacted with an aqueous amine solution which removes H$_2$S and CO$_2$ by chemical reaction and absorption. Measuring the H$_2$S and CO$_2$ concentrations in sour gas at the inlet and the sweet gas at the outlet of the Amine Treatment Unit is important for control and optimization of the treatment process.

Acid gas containing elevated levels of H$_2$S and CO$_2$ is a byproduct of the process. Many gas processing plants have a Sulfur Recovery Unit (SRU) on site to convert and recover elemental sulfur from H$_2$S in acid gas. Measuring the H$_2$S concentration in the acid gas stream is critical for optimization of the oxidation process occurring inside the SRU.
Molecular sieve dehydration

Trace level H₂O measurements for process control and optimization

Sweet natural gas exiting an Amine Treatment Unit is saturated with water vapor. Some water can be removed from wet gas by passing it through a knock-out drum, compression and cooling.

Molecular sieve dehydration must be used to obtain the very low H₂O concentration (< 0.1 ppm) required in low temperature and cryogenic processes for NGL extraction and liquefied natural gas (LNG) production.

Three or four dryer vessels containing molecular sieves are typically operated in parallel with a piping system that allows a saturated adsorbent bed to be taken off line for regeneration with heated gas. Measuring the moisture level in the outlet gas from each dryer vessel enables the operator to rapidly detect moisture breakthrough in the adsorbent bed and switch gas flow to a vessel with a freshly regenerated adsorbent bed.

SpectraSensors TDLAS analyzers monitor trace levels of H₂O at the outlet of molecular sieve dryer vessels to ensure the gas meets specifications and to control the dehydration process.
Fractionation & recovery of NGLs

Measuring contaminants in natural gas liquid (NGL) fractionation products

Unprocessed wellhead natural gas contains NGLs; ethane (C_2H_6), propane (C_3H_8), butane (C_4H_{10}), and a mix of C_5+ liquid condensates termed natural gasoline. These NGL compounds are commercially valuable as feedstocks for production of petrochemicals, octane-boosting gasoline additives, and for use as fuels. Raw natural gas containing low levels of NGLs is referred to as lean gas, while gas with elevated levels of NGLs is rich gas. The gas found in many shale formations is rich gas and plants processing shale gas will often include a fractionation unit to recover individual NGLs or a mixture of them.

Cryogenic processing is used to extract NGLs from natural gas. The extracted NGL mix is fed to a fractionation unit and processed through a series of fractionation columns; a deethanizer, a depropanizer, and a debutanizer to separate and recover ethane, propane, butane, and a residual C_5+ natural gasoline mix.

Purity specifications for NGL fractionation products are based on their intended use and downstream processing. SpectraSensors TDLAS analyzers measure H_2O, H_2S, and CO_2 in NGL fractionation products to ensure applicable specifications are met.